Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Biochim Biophys Acta Proteins Proteom ; 1871(6): 140930, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442518

RESUMO

Snake venoms have a complex mixture of compounds that are conserved across species and act synergistically, triggering severe local and systemic effects. Identification of the toxin classes that are most damaging to cell homeostasis would be a powerful approach to focus on the main activities that underpin envenomation. Here, we focus on the venom of Bothrops atrox, snake responsible for most of the accidents in Amazon region of South America. We identified the key cytotoxic toxin fractions from B. atrox venom and mapped their biochemical properties, protein composition and cell damage. Five fractions were obtained by mass exclusion chromatography and contained either a single class of enzymatic activity (i.e., L-amino acid oxidases or Hyaluronidases) or different activities co-distributed in two or more protein fractions (e.g., Metalloproteinases, Serine Proteases, or Phospholipases A2). Only three protein fractions reduced cell viability of primary human cells. Strikingly, such activity is accompanied by disruption of cell attachment to substratum and to neighbouring cells. Such strong perturbation of morphological cell features indicates likely defects in tissue integrity in vivo. Mass spectrometry identified the main classes of toxins that contribute to these phenotypes. We provide here a strategy for the selection of key cytotoxic proteins for targeted investigation of their mechanism of action and potential synergism during snakebite envenomation. Our data highlights putative toxins (or combinations of) that may be the focus of future therapeutic interference.


Assuntos
Bothrops , Mordeduras de Serpentes , Animais , Humanos , Antivenenos/análise , Antivenenos/metabolismo , Antivenenos/farmacologia , Bothrops/metabolismo , Mordeduras de Serpentes/terapia , Espectrometria de Massas , Metaloproteases/análise , Metaloproteases/química , Metaloproteases/metabolismo
2.
Toxicon ; 222: 107003, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535530

RESUMO

A comprehensive assessment of the literature on strategies for the detection and removing endotoxin from biotechnological preparations was conducted. This study highlighted the brief history of endotoxin. After that, a review of endotoxin's chemical and physical features, as well as its pathophysiological consequences when the body is exposed to LPS excessively or systemically, is presented. The procedures for determining endotoxin and the interaction of endotoxin with proteins are also discussed, considering both known approaches and cutting-edge technology in this sector. This review presented the endotoxin detection and removal approaches from antisera with an economical approach using several processes documented in the literature (e.g., adsorption, ultrafiltration, and chromatography). Different methods with relatively high protein recoveries are mentioned. This review concludes that heat activation at 70 °C-80 °C for 10 min and rehydration of the LAL reagent with endotoxin-specific buffer solution is the best technique to control the enhancement problem when testing polyvalent snake venom antiserum samples by the LAL method. The most efficient method for eliminating endotoxins has proven to be affinity resin-based chromatography.


Assuntos
Antivenenos , Endotoxinas , Animais , Endotoxinas/análise , Antivenenos/análise , Proteínas , Adsorção , Serpentes
3.
Artigo em Inglês | MEDLINE | ID: mdl-35245843

RESUMO

Various snake species and snake predators have natural neutralization against snake toxins, which their antidotal abilities are commonly attributed to the intrinsic inhibitors produced by the liver, e.g., phospholipase A2 inhibitor (PLI) and metalloproteinase inhibitor (SVMPI). Sinonatrix annularis was found to possess broad-spectrum neutralization to different snake venoms in our lab. Although the anti-venom compound PLIγ has been previously characterized in our laboratory, the mechanism of resistance of S. annularis to snake venoms remains obscure. In this research, a venom affinity chromatography was constructed by immobilizing D. acutus venom to NHS-agarose beads and applied for antitoxins mining from S. annularis. The binding capacity of the venom column was validated using a self-prepared rabbit antivenom against D. acutus. Serum and liver homogenate of S. annularis were then applied to the column, the bound components were profiled using SDS-PAGE and mass spectrometry. PLIs, snake venom metalloproteins inhibitor (SVMPI), small serum protein (SSP), heat shock proteins, etc were identified. To identify their toxin targets in D. acutus venom, a reverse separation was conducted by coupling the fractionated S. annularis serum proteins to NHS-agarose beads. Fifteen toxins of five families were captured and identified as follows: PLA2s, metalloproteinases, cysteine-rich secretory proteins, snake venom serine proteinases, and C-type lectins. These discoveries increased our understanding of the capacity and mechanism of the natural neutralization of S. annularis to snake venom. These natural inhibitors are medically significant due to their powerful and broad antidotal activities, which may provide alternative and promising drug candidates for snakebite treatment.


Assuntos
Antivenenos , Colubridae/fisiologia , Proteoma , Venenos de Serpentes/antagonistas & inibidores , Animais , Antivenenos/análise , Antivenenos/química , Masculino , Espectrometria de Massas , Metaloproteases , Camundongos , Fosfolipases A2 , Proteoma/análise , Proteoma/química , Proteômica , Coelhos
4.
J Sep Sci ; 45(4): 812-823, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34898000

RESUMO

A new strategy combined gold-coated magnetic nanocomposites assisted enrichment with mass spectrometry was developed for the characterization of disulfide bond-contained proteins from Chinese cobra (Naja atra) venom. In this work, core-shell nanocomposites were synthesized by the seed-mediated growth method and used for the enrichment of snake venom proteins containing disulfide bonds. A total of 3545 tryptic digested peptides derived from 96 venom proteins in Naja atra venom were identified. The venom proteins comprised 14 toxin families including three-finger toxins, phospholipase A2 , snake venom metalloproteinase, cobra venom factor, and so forth. Extra 16 venom proteins were detected exclusively in the nanocomposites set, among which 11 venom proteins were from the three-finger toxins family. In the present study, the proposed simple and efficient protocol replaced the tedious and laborious technologies commonly used for pre-separating crude snake venom, suggesting widely implementation in low-abundance or trace disulfide bond-contained proteins or peptides characterization.


Assuntos
Antivenenos , Naja naja , Animais , Antivenenos/análise , Antivenenos/química , Antivenenos/metabolismo , Dissulfetos , Naja naja/metabolismo , Proteoma/análise , Proteômica/métodos
5.
Braz. J. Pharm. Sci. (Online) ; 58: e191124, 2022. tab
Artigo em Inglês | LILACS | ID: biblio-1394054

RESUMO

Abstract Snakebite is one of the major health issues posing considerable morbidity and mortality. According to an estimate of World Health Organization (WHO) (World health organization, 2021) approximately 5 million people are bitten by several species of snakes resulting in up to 2.5 million envenomation cases annually. The mainstay of treatment for envenomation is intravenous administration of anti-snake venom. Although antivenom neutralizes the systemic effects but it does not relieve the symptoms such as venom-induced hemorrhage, necrosis and nephrotoxicity. Moreover, the use of antivenoms is associated with hypersensitivity reactions including urticaria, anaphylaxis, or serum sickness due to their heterologous property. Furthermore, stringent storage conditions and narrow specificity of antivenoms limit their use in both developed as well as developing countries. In this context, researchers have been searching for natural products and plant extracts to explore their antivenom activity along with anti-myotoxic, anti-hemorrhagic and anti-inflammatory properties. Plant remedies may prove to be an effective alternate for antivenom sera with less adverse events and better tolerability. To the best of our knowledge, this is the first comprehensive review of medicinal plants possessing anti-snake venom activities against certain species of snakes. The current review highlights the investigated plants with their phytochemical analysis to integrate the available information for future research and development of antivenom sera.


Assuntos
Plantas Medicinais/efeitos adversos , Venenos de Serpentes/análise , Antivenenos/análise , Venenos Elapídicos/isolamento & purificação , Compostos Fitoquímicos/agonistas , Mordeduras de Serpentes/classificação , Organização Mundial da Saúde , Extratos Vegetais , Administração Intravenosa/instrumentação
6.
Drug Test Anal ; 13(8): 1471-1489, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34089574

RESUMO

Snakebite envenomation is a public health problem of high impact, particularly for the developing world. Antivenom, which contains whole or protease-digested immunoglobulin G, purified from the plasma of hyper-immunized animals (mainly horses), is the mainstay for the treatment of snakebite envenomation. The success of antivenom therapy depends upon its ability to abrogate or reduce the local and systemic toxicity of envenomation. In addition, antivenom administration must be safe for the patients. Therefore, antivenom manufacturers must ensure that these products are effective and safe in the treatment of envenomations. Antivenom efficacy and safety are determined by the physicochemical characteristics of formulations, purity of the immunoglobulin fragments and antibodies, presence of protein aggregates, endotoxin burden, preservative load, and batch to batch variation, as well as on the ability to neutralize the most important toxins of the venoms against which the antivenom is designed. In this context, recent studies have shown that laboratory-based simple analytical techniques, for example, size exclusion chromatography, sodium dodecyl sulphate polyacrylamide gel electrophoresis, mass spectrometry, immunological profiling including immuno-turbidimetry and enzyme-linked immunosorbent assays, Western blotting, immune-chromatographic technique coupled to mass spectrometry analysis, reverse-phase high performance liquid chromatography, spectrofluorometric analysis, in vitro neutralization of venom enzymatic activities, and other methodologies, can be applied for the assessment of antivenom quality, safety, stability, and efficacy. This article reviews the usefulness of different analytical techniques for the quality assessment of commercial antivenoms. It is suggested that these tests should be applied for screening the quality of commercial antivenoms before their preclinical and clinical assessment.


Assuntos
Antivenenos/análise , Técnicas de Química Analítica , Mordeduras de Serpentes/tratamento farmacológico , Animais , Humanos , Imunoglobulina G/química , Ciência de Laboratório Médico , Controle de Qualidade
7.
Trop Biomed ; 38(2): 111-118, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34172698

RESUMO

In 2000, an equine Yamakagashi (Rhabdophis tigrinus) antivenom (Lot 0001) was testmanufactured as an unapproved drug for treatment of Yamakagashi bites. It was stocked on the premise of super-legal use from the viewpoint of emergency health crisis management. The antivenom showed a strong neutralizing ability against the hemorrhagic and coagulation activity of the Yamakagashi venom in its potency test. One vial of the antivenom can effectively neutralize at least about 4 mg of Yamakagashi venom. Its efficacy has also been confirmed in patients with severe cases of R. tigrinus bite that has been used in emergency. In 2020, this antivenom (Lot 0001) has reached 20 years after its production. To evaluate the integrity and potency of the antivenom, quality control, safety and potency tests had been conducted almost every year since 2012. Physical and chemical tests (property test, moisture content test, insoluble foreign matter test, osmotic pressure ratio test, pH test, protein content test, endotoxin test, sterility test) of the antivenom, showed no significant changes throughout the years, when compared to the results immediately after its production in 2000. All the parameters measured were also within the standard values. In animal safety tests (test for absence of toxicity and pyrogen), there was no change in the test results during the storage period and no abnormalities were observed. The potency test (anti-coagulant activity) after 20 years of the product, showed the same potency as those recorded immediately after production. Therefore, in all of the stability monitoring tests conducted so far, the product did not show any significant change compared to the results immediately after production. This confirms the stability of the product during the stockpiling period to the present, that is, 20 years after production.


Assuntos
Antivenenos , Colubridae , Estabilidade de Medicamentos , Animais , Antivenenos/análise , Armazenamento de Medicamentos , Cavalos , Controle de Qualidade
8.
Toxins (Basel) ; 12(12)2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327454

RESUMO

Whole IgG antivenoms are prepared from hyperimmune animal plasma by various refinement strategies. The ones most commonly used at industrial scale are precipitation by sodium or ammonium sulphate (ASP), and caprylic acid precipitation (CAP) of non-immunoglobulin proteins. The additional procedures, which have so far been used for experimental purposes only, are anion-exchange (AEX) and cation-exchange chromatography (CEX), as well as affinity chromatography (AC) using IgG's Fc-binding ligands. These protocols extract the whole IgG fraction from plasma, which contains both venom-specific and therapeutically irrelevant antibodies. Such preparations represent a complex mixture of various IgG subclasses whose functional and/or structural properties, as well as relative distribution, might be affected differently, depending on employed purification procedure. The aim of this work was to compare the influence of aforementioned refinement strategies on the IgG subclass distribution, venom-specific protective efficacy, thermal stability, aggregate formation and retained impurity profile of the final products. A unique sample of Vipera ammodytes ammodytes specific hyperimmune horse plasma was used as a starting material, enabling direct comparison of five purification approaches. The highest purity was achieved by CAP and AC (above 90% in a single step), while the lowest aggregate content was present in samples from AEX processing. Albumin was the main contaminant in IgG preparations obtained by ASP and CEX, while transferrin dominantly contaminated IgG sample from AEX processing. Alpha-1B-glycoprotein was present in CAP IgG fraction, as well as in those from ASP- and AEX-based procedures. AC approach induced the highest loss of IgG(T) subclass. CEX and AEX showed the same tendency, while CAP and ASP had almost no impact on subclass distribution. The shift in IgG subclass composition influenced the specific protective efficacy of the respective final preparation as measured in vivo. AC and CEX remarkably affected drug's venom-neutralization activity, in contrary to the CAP procedure, that preserved protective efficacy of the IgG fraction. Presented data might improve the process of designing and establishing novel downstream processing strategies and give guidance for optimization of the current ones by providing information on potency-protecting and purity-increasing properties of each purification principle.


Assuntos
Antivenenos/sangue , Cavalos/sangue , Imunoglobulina G/sangue , Pesquisa Qualitativa , Venenos de Víboras/toxicidade , Animais , Antivenenos/análise , Cromatografia por Troca Iônica/métodos , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Imunoglobulina G/análise , Masculino , Camundongos , Venenos de Víboras/antagonistas & inibidores
9.
Toxicon ; 170: 68-76, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31494208

RESUMO

Accidents with venomous snakes are a major health hazard in tropical countries. Bothrops genus is responsible for almost 80% of snakebites in Brazil. Immunotherapy is the only approved specific treatment against snake toxins and the production of therapeutic antivenoms requires quality control tests to determine their neutralizing potency. Currently, these controls are performed by in vivo lethality neutralization, however, the inhibition of particular events produced by bothropic venoms such as coagulopathy, hemorrhage, edema or cytotoxic effects are also required. The aim of this work is to develop an in vitro alternative assay for antivenom pre-clinical evaluation. In this sense, we designed a cell viability assay using different amounts (0.2-10 µL/well) of low and high potency anti-bothropic sera, previously classified by the traditional in vivo test, for assessing the antivenom capacity to protect the cells against B. jararaca venom cytotoxicity (5xEC50 = 58.95 µg/mL). We found that high potency sera are more effective in neutralizing B. jararaca venom cytotoxicity when compared to low potency sera, which is in accordance to their pre-determined in vivo potency. Considering sera in vitro inhibitory concentration able to prevent 50% cell death (IC50) and their known in vivo potency, a cut-off point was determined to discriminate low and high potency sera. Our data provide insights for the development of an in vitro method which can determine the anti-bothropic antivenom potency during its production.


Assuntos
Antivenenos/análise , Bothrops , Sobrevivência Celular/efeitos dos fármacos , Venenos de Crotalídeos/imunologia , Animais , Bioensaio , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática , Feminino , Cavalos/sangue , Cavalos/imunologia , Técnicas In Vitro/métodos , Masculino , Células Vero/efeitos dos fármacos
10.
PDA J Pharm Sci Technol ; 73(6): 562-571, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30770487

RESUMO

The only definitive management of snake envenoming is the use of snake antivenom. Endotoxin contamination is a serious threat to the safe use of parenteral drugs. A greater understanding of the nature of limulus amebocyte lysate (LAL) test interference and use of permissible dilutions has minimized enhancement problems. Common interference issues include suboptimal pH, enzyme or protein modification, and nonspecific LAL activation. This study aimed at determining the interference factors associated with validating the antivenom sera preparations to avoid false-positive results when testing snake antivenom serum samples by the LAL method. Phase I (preliminary screening/interference assay) was performed to determine a compatible test dilution, which was then used in Phase II (inhibition-enhancement/validation study). The best approach to resolve interference issues was dilution by 1:80 (maximum valid dilution) plus a specific treatment as heat-activation at 70°C-80°C for 10 min with rehydration of LAL reagent with endotoxin-specific buffer solution.LAY ABSTRACT: Snake antivenom sera are produced by immunizing horses with repeated nonlethal doses of snake venom. Bacterial endotoxins constitute one of the major problems in the formulation of pharmaceutical products. One such method for detecting endotoxin levels is the bacterial endotoxin test (BET). However, some substances show strong interfering action with the BET that cannot be avoided by simply diluting the sample solution. In this work, the test for interfering factors was performed as two identical series of product dilutions-one spiked with 2λ and one left unspiked. The result of the interference test revealed the noninterfering dilution (NID) of the product, which was used for the actual validation. Our results showed that after treating the samples using different procedures, such as heat activation at 70-80°C for 10 min followed by centrifugation at 2000 rpm for 10 min and dilution of samples in BD100 (biodispersing agent), inhibition and enhancement up to 1:100 maximum valid dilution (MVD) were observed. Finally, to resolve this inhibition/enhancement problem, the activated sample was heated at 70-80°C for 10 min with rehydration of the Endosafe LAL reagent in an endotoxin-specific buffer solution (BG120) to block ß-d-glucans and limulus amebocyte lysate (LAL) reactive material (LAL-RM).


Assuntos
Antivenenos/análise , Bactérias/isolamento & purificação , Endotoxinas/análise , Teste do Limulus/métodos , Animais , Cavalos , Temperatura Alta , Venenos de Serpentes/imunologia
11.
J Proteomics ; 187: 171-181, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30048773

RESUMO

In order to determine Bothriopsis bilineata smaragdina venom (BbsV) composition, proteomic approaches were performed. Venom components were analyzed by RP-HPLC, SDS- PAGE and nano LC on line with LTQ Orbitrap XL. Results showed a total of 189 identified proteins, grouped into 11 different subgroups, which include snake venom metalloproteinases (SVMPs, 54.67%), snake C-type lectins (Snaclecs, 15.78%), snake venom serine proteinases (SVSPs, 14.69%), cystein-rich secretory proteins (CRISP, 2.61%), phospholipases A2 (PLA2, 1.14%), phosphodiesterase (PDE, 1.17%), venom endothelial growth factor (VEGF, 1.06%) 5'nucleotidases (0.33%), L-amino acid oxidases (LAAOs, 0.28%) and other proteins. In vitro enzymatic activities (SVMP, SVSP, LAAO, Hyal and PLA2) of BbsV were also analyzed. BbsV showed high SVSP activity but low PLA2 activity, when compared to other Bothrops venoms. In vivo, BbsV induced hemorrhage and edema in mice and showed intraperitoneal median lethal dose (LD50) of 92.74 (± 0.15) µg/20 g of mice. Furthermore, BbsV reduced cell viability when incubated with VERO cells. Peruvian and Brazilian bothropic antivenoms recognize BbsV proteins, as detected by ELISA and Western Blotting. Both antivenoms were able to neutralize in vivo edema and hemorrhage. SIGNIFICANCE: In Peru, snakebite is a public health problem, especially in the rain forest, as a result of progressive colonization of this geographical area. This country is the second in Latin America, after Brazil, to exhibit the largest variety of venomous snakes. B. atrox and B. b. smaragdina snakes are sympatric species in Peruvian Amazon region and are responsible for approximately 95% of the envenomings reported in this region. B. b. smaragdina may cause a smaller share (3 to 38%) of those accidents, due to its arboreal habits, that make human encounters with these snakes less likely to happen. Despite B. b. smaragdina recognized medical importance, its venom composition and biological activities have been poorly studied. Furthermore, BbsV is not a component of the antigenic pool used to produce the corresponding Peruvian bothropic antivenom (P-BAV). Our results not only provide new insights on BbsV composition and biological activity, but also demonstrate that both P-BAV and B-BAV polyvalent antivenoms have a considerable recognition of proteins from BbsV and, more importantly, neutralized hemorrhage and edema, the main local effects of bothropic envenomation.


Assuntos
Antivenenos/análise , Bothrops , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/metabolismo , Venenos de Crotalídeos/farmacologia , Animais , Antivenenos/metabolismo , Chlorocebus aethiops , Venenos de Crotalídeos/análise , Feminino , Hemorragia/induzido quimicamente , Hemorragia/patologia , L-Aminoácido Oxidase/análise , L-Aminoácido Oxidase/metabolismo , Dose Letal Mediana , Metaloproteases/análise , Metaloproteases/metabolismo , Camundongos , Peru , Fosfolipases A2/análise , Fosfolipases A2/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica , Serina Proteases/análise , Serina Proteases/metabolismo , Células Vero
12.
J Proteomics ; 187: 59-68, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29929037

RESUMO

Deinagkistrodon acutus, Trimeresurus stejnegeri, Protobothrops mucrosquamatus, Daboia russelii siamensis, Bungarus multicinctus and Naja atra are the six medically important venomous snake species in Taiwan. In this study, we characterized and compared their venom protein profiles using proteomic approaches. The major snake venom proteins were identified by GeLC-MS/MS and the total venom proteome was characterized by in-solution digestion coupled with LC-MS/MS. A total of 27-52 proteins, categorized into 23 protein families, were identified in each snake's venom. The major venom components found in Viperidae species (D. acutus, T. stejnegeri, P. mucrosquamatus and D. russelii) were C-type lectin, snake venom serine proteinase, venom metalloproteinase and phospholipase A2, whereas three-finger toxin and phospholipase A2 were the major components detected in the venom of Elapidae snakes (B. multicinctus and N. atra). This study also provided the first demonstration of some low-abundance proteins in these six snake venoms, including 5'-nucleotidase, glutaminyl-peptide cyclotransferase and phosphodiesterase, among others. Furthermore, we found that cobra venom factor (CVF) is a cobra-specific protein. We produced anti-peptide antibodies against CVF and used it to develop a highly sensitive SISCAPA-MRM assay for quantifying CVF. The limit of detection and lower limit of quantification were 3.2 and 9.6 attomoles, respectively. This assay was used to precisely quantify CVF in 1 µg crude venom proteins from three Naja species and king cobra. The amount of CVF varied from 0.9 to 54.36 femtomoles (equivalent to 0.16-10.03 mg/g of venom protein). BIOLOGICAL SIGNIFICANCE: There are six medically significant venomous snakes in Taiwan. The venoms of the four Viperidae species (Deinagkistrodon acutus, Trimeresurus stejnegeri, Protobothrops mucrosquamatus and Daboia russelii siamensis) cause local tissue swelling; this symptom is also seen in N. atra envenomation in humans, potentially complicating the differential diagnosis of envenomation by N. atra and Viperidae species. Thus, characterization of the venom proteomes of the six Taiwanese snakes, including the relative abundance of the major components and species-specific protein(s) in each venom type, could be useful for future venom research, including the development of new assay(s) for detecting snake species-specific venom protein(s) and new type(s) of antivenom.


Assuntos
Venenos Elapídicos/análise , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Venenos de Serpentes/análise , Animais , Anticorpos/análise , Anticorpos/química , Antivenenos/análise , Antivenenos/química , Bungarus , Cromatografia Líquida , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Elapidae , Marcação por Isótopo/métodos , Naja naja , Proteoma/química , Proteoma/metabolismo , Venenos de Serpentes/química , Venenos de Serpentes/metabolismo , Especificidade da Espécie , Taiwan , Espectrometria de Massas em Tandem/métodos , Viperidae
13.
J Ethnopharmacol ; 211: 340-347, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28993279

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Thapsia garganica, is a herbal medicine traditionally used as diuretic, emetic and purgative. It is also used as anti-scorpion venom in Morocco; however, its protective effects against scorpion venom remain elusive. AIM OF THE STUDY: The present study was undertaken to evaluate anti-venom activity of T. garganica in vivo through histological and biochemical studies. MATERIALS AND METHODS: Methanolic leaves extract of T. garganica was evaluated for anti-venom activity against buthus. occitanus under in vivo conditions. Histopathological and biochemical changes in envenomed and treated mice were also examined. Phytochemical screening was conducted to estimate the major constituents whereas DPPH, ß -Carotene-linoleic acid and reducing power assays were performed to evaluate the anti-oxidant activity of T. garganica extract. RESULTS: Methanolic leaves extract of T. garganica (2g/kg) increased the survival time (> 18h) of mice injected with lethal doses of B. occitanus venom, with remarkable recovery of histology damage. Furthermore T. garganica induced a significant decreased of biochemical markers of kidney, liver and heart function. Phytochemistry screening revealed the presence of phenolic compounds, flavonoids, tannins and steroids/terpenoids, which might explain the bioactivity of the extract. It was also shown that the extract has an exceptionally high antioxidant activity compared to well-known antioxidants used as standards. CONCLUSION: The present study provides strong evidence that support the use of T. garganica as anti-scorpion venom in traditional medicine in Morocco. However, additional studies are required to isolate and identify the metabolites responsible for the activity.


Assuntos
Antioxidantes/uso terapêutico , Antivenenos/uso terapêutico , Extratos Vegetais/uso terapêutico , Venenos de Escorpião/toxicidade , Thapsia , Animais , Antioxidantes/análise , Antioxidantes/toxicidade , Antivenenos/análise , Antivenenos/toxicidade , Rim/efeitos dos fármacos , Rim/patologia , Dose Letal Mediana , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Medicina Tradicional , Metanol/química , Camundongos , Marrocos , Miocárdio/patologia , Extratos Vegetais/análise , Extratos Vegetais/toxicidade , Folhas de Planta , Solventes/química
14.
Biologicals ; 49: 1-5, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28818424

RESUMO

A collaborative study was performed for the establishment of the 5th lot of Brazilian Bothrops Reference Venom and the 1st lot of Brazilian Bothrops Reference Antivenom. All Brazilian manufacturers of Antibothrops Immunoglobulins and the National Control Laboratory participated of the study. The declared potency of the 5th lot of the Bothrops Reference Venom is 40.29 µg/0.5 ml, and the potency of the 1st lot of Bothrops Reference Antivenom is 6.51 mg/ml. For the potency evaluation of Bothrops Reference Venom the inter assay precision (gCV) was 3.25% in lab 01; 3.51% in INCQS; 4.71% in lab 03 and 25.11% in lab 02, and the inter laboratory precision was 13.76%. The intra assay precision of Bothrops Reference Antivenom determinations was 4.38% in INCQS; 8.47% in lab 02; 10.51% in lab 03 and 20.05% in lab 01. The inter assay precision was 3.51% in INCQS; 9.65% in lab 02; 18.03% in lab 01 and 20.23% in lab 03. The inter laboratory precision was 15.85%. Despite the high number of invalid results (55.6% for the pharmacopoeial method and 69.4% for the proposed method) the parallel line assay, have better inter laboratorial precision (gCV = 16.62%) than the pharmacopoeial potency assay (gCV = 38.28%).


Assuntos
Antivenenos/análise , Bothrops , Venenos de Crotalídeos/análise , Animais , Brasil , Padrões de Referência
15.
J Proteomics ; 150: 98-108, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27593527

RESUMO

A toxicovenomic analysis of the venom of the forest cobra, N. melanoleuca, was performed, revealing the presence of a total of 52 proteins by proteomics analysis. The most abundant proteins belong to the three-finger toxins (3FTx) (57.1wt%), which includes post-synaptically acting α-neurotoxins. Phospholipases A2 (PLA2) were the second most abundant group of proteins (12.9wt%), followed by metalloproteinases (SVMPs) (9.7wt%), cysteine-rich secretory proteins (CRISPs) (7.6wt%), and Kunitz-type serine proteinase inhibitors (3.8wt%). A number of additional protein families comprised each <3wt% of venom proteins. A toxicity screening of the fractions, using the mouse lethality test, identified toxicity in RP-HPLC peaks 3, 4, 5 and 8, all of them containing α-neurotoxins of the 3FTx family, whereas the rest of the fractions did not show toxicity at a dose of 0.53mg/kg. Three polyspecific antivenoms manufactured in South Africa and India were tested for their immunoreactivity against crude venom and fractions of N. melanoleuca. Overall, antivenoms immunorecognized all fractions in the venom, the South African antivenom showing a higher titer against the neurotoxin-containing fractions. This toxicovenomic study identified the 3FTx group of α-neurotoxins in the venom of N. melanoleuca as the relevant targets to be neutralized. BIOLOGICAL SIGNIFICANCE: A toxicovenomic analysis of the venom of the forest cobra, also known as black cobra, Naja melanoleuca, was performed. Envenomings by this elapid species are characterized by a progressive descending paralysis which starts with palpebral ptosis and, in severe cases, ends up with respiratory arrest and death. A total of 52 different proteins were identified in this venom. The most abundant protein family was the three-finger toxin (3FTx) family, which comprises almost 57.1wt% of the venom, followed by phospholipases A2 (PLA2) (12.9wt%). In addition, several other protein families were identified in a much lower percentage in the venom. A toxicity screening of the fractions, using the mouse lethality assay, identified four peaks as those having toxicity higher than that of the crude venom. These fractions predominantly contain α-neurotoxins of the 3FTx family. This toxicovenomic characterization agrees with the clinical and experimental manifestations of envenomings by this species, in which a strong neurotoxic effect predominates. Therefore, our findings suggest that immunotherapy against envenomings by N. melanoleuca should be directed towards the neutralization of 3FTxs; this has implications for the improvement of current antivenoms and for the development of novel antivenoms based on biotechnological approaches. A screening of the immunoreactivity of three antivenoms being distributed in sub-Saharan Africa revealed that they immunoreact with the fractions containing α-neurotoxins, although with different antibody titers.


Assuntos
Venenos Elapídicos/análise , Elapidae/metabolismo , Proteoma/análise , Proteômica/métodos , Toxicologia/métodos , Animais , Antivenenos/análise , Antivenenos/metabolismo , Venenos Elapídicos/química , Feminino , Dose Letal Mediana , Masculino , Camundongos , Neurotoxinas/análise , Neurotoxinas/metabolismo , Fosfolipases A2/metabolismo , Proteoma/metabolismo
16.
J Proteomics ; 150: 201-215, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27650695

RESUMO

The Papuan black snake (Pseudechis papuanus Serpentes: Elapidae) is endemic to Papua New Guinea, Indonesian Papua and Australia's Torres Strait Islands. We have investigated the biological activity and proteomic composition of its venom. The P. papuanus venom proteome is dominated by a variety (n≥18) of PLA2s, which together account for ~90% of the venom proteins, and a set of low relative abundance proteins, including a short-neurotoxic 3FTx (3.1%), 3-4 PIII-SVMPs (2.8%), 3 cysteine-rich secretory proteins (CRISP; 2.3%) 1-3 l-amino acid oxidase (LAAO) molecules (1.6%). Probing of a P. papuanus cDNA library with specific primers resulted in the elucidation of the full-length nucleotide sequences of six new toxins, including vespryn and NGF not found in the venom proteome, and a calglandulin protein involved in toxin expression with the venom glands. Intravenous injection of P. papuanus venom in mice induced lethality, intravascular haemolysis, pulmonary congestion and oedema, and anticoagulation after intravenous injection, and these effects are mainly due to the action of PLA2s. This study also evaluated the in vivo preclinical efficacy of Australian black snake and polyvalent Seqirus antivenoms. These antivenoms were effective in neutralising the lethal, PLA2 and anticoagulant activities of P. papuanus venom in mice. On the other hand, all of the Seqirus antivenoms tested using an antivenomic approach exhibited strong immunorecognition of all the venom components. These preclinical results suggest that Australian Seqirus1 antivenoms may provide paraspecific protection against P. papuanus venom in humans. SIGNIFICANCE PARAGRAPH: The toxicological profile and proteomic composition of the venom of the Papuan black snake, Pseudechis papuanus, a large diurnal snake endemic to the southern coast of New Guinea and a handful of close offshore islands, were investigated. Intravenous injection of P. papuanus venom in mice induced intravascular hemolysis, pulmonary congestion and edema, anticoagulation, and death. These activities could be assigned to the set of PLA2 molecules, which dominate the P. papuanus venom proteome. This study also showed that Australian Seqirus black snake or polyvalent antivenoms were effective in neutralising the lethal, PLA2 and anticoagulant activities of the venom. These preclinical results support the continued recommendation of these Seqirus antivenoms in the clinical management of P. papuanus envenoming in Australia, Papua New Guinea or Indonesian Papua Province.


Assuntos
Antivenenos , Venenos Elapídicos/análise , Elapidae/metabolismo , Proteoma/análise , Proteômica , Animais , Antivenenos/análise , Antivenenos/metabolismo , Antivenenos/uso terapêutico , Austrália , Avaliação Pré-Clínica de Medicamentos , Venenos Elapídicos/metabolismo , Dose Letal Mediana , Camundongos , Testes de Neutralização , Papua Nova Guiné , Proteoma/metabolismo , Testes de Toxicidade , Resultado do Tratamento
17.
Clin Toxicol (Phila) ; 54(3): 245-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26678882

RESUMO

CONTEXT: Funnel-web spider (Atrax and Hadronyche spp.) envenoming is rare but causes severe neuromuscular, autonomic, and cardiac effects. A rabbit-derived IgG antivenom is available, but venom detection in patients has not been reported. OBJECTIVE: To use serial venom and antivenom concentrations to better define envenoming and antivenom effectiveness. MATERIALS AND METHODS: Serum was collected from nine patients with suspected funnel-web spider bites and clinical effects were recorded. Venom-specific enzyme immunoassays were developed to measure funnel-web spider venom and antivenom concentrations. Goat anti-rabbit whole serum was coupled to UltraLink resin and added to samples to remove bound venom and measure free venom. Antivenom efficacy was defined as antivenom binding all free venom and antivenom effectiveness as resolution of clinical features. RESULTS: Venom was detectable in samples from six of nine patients. In three patients without venom detected, there were only moderate effects, which did not completely respond to antivenom in all cases and no spider was identified. In five of six cases, a male Atrax spp. (Sydney funnel-web) spider was identified. Three patients had moderate envenoming which responded to antivenom. Three patients had severe envenoming and developed catecholamine-induced myocarditis and acute pulmonary oedema. Although cholinergic and non-specific clinical features appeared to respond to antivenom, myocarditis and pulmonary oedema lasted 2-4 days. Median venom concentration pre-antivenom in five patients with samples was 5.6 ng/ml (3-35 ng/ml), and immediately post-antivenom decreased to a median of 0 ng/ml (0-1.8 ng/ml). Post-antivenom venom concentrations decreased when bound venom was removed; median, 0 ng/ml (0-0.9 ng/ml), indicating that most venom detected post-antivenom was bound. There was recurrence of venom and clinical features in one patient when a pressure bandage was removed. CONCLUSIONS: Detection of venom in suspected funnel-web spider bites identified definite cases with characteristic envenoming and a spider was identified. Measurement of venom concentrations pre- and post-antivenom demonstrated that venom was bound by antivenom, but in severe cases cardiac toxicity was not reversed.


Assuntos
Antivenenos/análise , Picaduras de Aranhas/tratamento farmacológico , Venenos de Aranha/antagonistas & inibidores , Venenos de Aranha/análise , Adolescente , Adulto , Idoso , Animais , Doenças do Sistema Nervoso Autônomo/induzido quimicamente , Doenças do Sistema Nervoso Autônomo/tratamento farmacológico , Pré-Escolar , Feminino , Cabras/imunologia , Humanos , Técnicas Imunoenzimáticas , Imunoglobulina G/análise , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Miocardite/induzido quimicamente , Miocardite/tratamento farmacológico , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/tratamento farmacológico , Coelhos , Recidiva , Adulto Jovem
18.
J. venom. anim. toxins incl. trop. dis ; 22: [1-12], 2016. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484678

RESUMO

In the Atlantic forest of the North and Northeast regions of Brazil, local population often uses the fruit juice and the aqueous extract of leaves of soursop (Annona muricata L.) to treat Lachesis muta rhombeata envenomation. Envenomation is a relevant health issue in these areas, especially due to its severity and because the production and distribution of antivenom is limited in these regions. The aim of the present study was to evaluate the relevance of the use of soursop leaf extract and its juice against envenomation by Lachesis muta rhombeata. Methods We evaluated the biochemical, hematological and hemostatic parameters, the blood pressure, the inflammation process and the lethality induced by Lachesis muta rhombeata snake venom. We also assessed the action of the aqueous extract of leaves (AmL) and juice (AmJ) from A. muricata on the animal organism injected with L. m. rhombeata venom (LmrV) in the laboratory environment. Results LmrV induced a decrease of total protein, albumin and glucose; and increase of creatine kinase, aspartate aminotransferase, and urea concentrations. It provoked hemoconcentration followed by reduction of hematocrit, an increase in prothrombin time and partial thromboplastin time and a decrease of the blood pressure. LmrV induced the release of interleukin-6, an increase in neutrophils and changes in the serum protein profile, characteristic of the acute inflammatory process. LD50 values were similar for the groups injected with LmrV and treated or untreated with AmJ and AmL. Both treatments play a role on the maintenance of blood glucose, urea and coagulation parameters and exert a protective action against the myotoxicity. However, they seem to worsen the hypotension caused by LmrV. Conclusion The treatments with AmJ and AmL present some beneficial actions, but they might intensify some effects of the venom. Therefore, additional studies on A. muricata are necessary to enable its use as natural antivenom for bushmaster snakebite.


Assuntos
Annona/efeitos adversos , Annona/envenenamento , Antivenenos/análise , Antivenenos/química , Lachesis muta/administração & dosagem , Lachesis muta/análise
19.
J. venom. anim. toxins incl. trop. dis ; 22: [1-5], 2016. tab, map
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484679

RESUMO

Snakebite is a common neglected public health issue, especially in poor rural areas of sub-Saharan Africa, Asia and Latin America. Passive immunotherapy with safe and effective antivenom is the only approved treatment for it. This study aimed to determine the incidence of snakebites, and to assess the availability and accessibility of antivenoms, from 2010 to 2014, in Burkina Faso. Methods The assessment of snakebite cases managed in all health facilities from 2010 to 2014 was performed from the Statistical Yearbook of the Ministry of Health. Antivenom consumption data were collected from the drug wholesalers established in Burkina Faso. Results Snakebites are among the five leading causes of consultations in health districts. From 2010 to 2014, 114,126 envenomation cases occurred in Burkina Faso, out of which 62,293 (54.6 %) victims have been hospitalized resulting in 1,362 (2 %) deaths. The annual incidence and mortality were respectively 130 bites and 1.75 deaths per 100,000 inhabitants. The amount of antivenom sold by wholesalers were 5,738 vials with a total cost of US$ 539,055 (annual average = US$ 107,811). The high cost of these antivenoms (between US$ 42 and 170 per dose according to brand) limited their use by rural people, the main victims of snakebites, whose income is insufficient. Thus, only 4 % of patients received antivenom treatment over the past five years. The price of antivenom was reduced in 2015 to US$ 3.4 by a public drug wholesaler. Conclusion The study confirmed the high burden of snakebites in Burkina Faso. To better manage envenomation, Burkina Faso implemented a strategy consisting in seeking affordable sources of antivenom supply of good quality and innovative mechanisms of subsidy.


Assuntos
Antivenenos/análise , Estudos Retrospectivos , Intoxicação/classificação , Acesso aos Serviços de Saúde
20.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484686

RESUMO

Crotalidae Polyvalent Immune Fab (Ovine) (FabAV) antivenin is commonly recommended after pit viper snakebites. Because copperhead envenomations are usually self-limited, some physicians are reluctant to use this costly treatment routinely, while others follow a more liberal approach. We hypothesized that, in practice, only patients with evidence of significant (moderate or severe) copperhead envenomation [those with snakebite severity score (SSS) > 3] receive FabAV and examined a large cohort to determine the relationship between clinical findings and FabAV administration. Methods All data from patients evaluated for copperhead snakebite at a rural tertiary referral center from 5/2002 to 10/2013 were compiled. Demographics, transfer status, antivenin use, and clinical findings were collected; SSS was calculated. The relationships among FabAV use, clinical findings, and SSS were analyzed using t-test, chi-square, and Pearsons coefficient (p 0.05 was significant). Results During the study period, 318 patients were treated for copperhead snakebite; 44 (13.8 %) received antivenin. Median dose was four vials (range: 110; IQR: 4,6). There were no deaths. Most patients receiving FabAV (63.6 %) were admitted. With regard to demographics and symptoms, only the degree of swelling (moderate vs. none/mild; p 0.01) and bite location (hand/arm vs. leg: p 0.0001) were associated with FabAV use. A SSS > 3, indicating moderate or severe envenomation, was only very weakly correlated with antivenin use (r = 0.217;p 0.0001). The majority of patients with SSS > 3 (65.8 %) did not receive antivenin while most patients who did receive antivenin (70.5 %) had SSS 3 (indicating mild envenomation). Conclusions Considerable variation occurs in antivenin administration after copperhead snakebite. Use of FabAV appears poorly correlated with patients symptoms. This practice may expose patients to the risks of antivenin and increasing costs of medical care without improving outcomes. Guidelines used for treating other pit viper strikes, such as rattlesnake or cottonmouth snakebite may be too liberal for copperhead envenomations. Our data suggests that most patients with mild or moderate envenomation appear to do well independent of FabAV use. We suggest, for patients with copperhead snakebite, that consideration be given to withholding FabAV for those without clinical evidence of severe envenomation until prospective randomized data are available.


Assuntos
Animais , Antivenenos/análise , Antivenenos/uso terapêutico , Mordeduras de Serpentes/reabilitação , Fabavirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...